
624 

Acta Cryst. (1993). A49, 624--642 

Instrumental Effects on Measurements of Surface X-ray Diffraction Rods: Resolution 
Function and Active Sample Area 

BY MICHAEL F. TONEY 

I B M  Almaden Research Center, I B M  Research Division, San Jose, CA 95120, USA 

AND DAVID G.  WIESLER 

National Institute of  Standards and Technology, Gaithersburg, M D  20899, USA 

(Received 6 July 1992; accepted 11 January 1993) 

Abstract 

This paper describes the effect of instrumental reso- 
lution on the line shapes and intensities of surface 
diffraction rods when the component of the scattering 
vector perpendicular to the surface (Qz) is not small. 
Using a square-wave shape for the resolution function 
perpendicular to the scattering plane but an arbitrary 
in-plane shape, it is calculated how the resolution 
affects line shapes when the scattering vector is scan- 
ned parallel to the surface (QII scans). The approach 
used is to measure the line shape in QII scans at small 
Qz and from this to determine how the Qll line shapes 
depend on Q~. Line shapes calculated in this manner 
are compared with data from an Ag(111) surface with 
excellent agreement, confirming the treatment. A 
similar approach is used to calculate the resolution 
correction that is needed to convert the measured 
diffraction-rod intensities into structure factors. 
Measurements of both peak intensity and integrated 
intensities in rocking scans are treated and the results 
are compared with those of previous treatments. 
Finally, the active sample area for an incident beam 
that is spatially nonuniform is calculated, as appropri- 
ate for experiments using focusing optics and wide 
incident slits. This approach accounts for the active 
area more accurately than the usual calculation 
assuming a uniform rectangular beam. The results 
described in this paper permit a better understanding 
of the effects of instrumental resolution on the line 
shapes of surface diffraction rods, enable more accur- 
ate determination of structure factors along these rods 
and are valid for nearly all Qz. 

I. Introduction 

X-ray diffraction has long been recognized as the 
most powerful technique for structure determination 
of three-dimensional (3D) matter and in the past 
decade has been increasingly applied to the study of 
two-dimensional (2D) adsorbed layers and surfaces 
(Marra, Eisenberger & Cho, 1979; Feidenhans'l, 
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1989; Robinson, 1991; Toney & Melroy, 1991). The 
diffraction from a 2D crystal or the surface of a 3D 
crystal is characterized by rods of intensity, so named 
because they are sharp in the directions parallel to 
the surface yet are extended normal to the surface. 
Measurements of the intensity profiles along these 
surface diffraction rods provide a wealth of important 
information on the atomic structures of surfaces, 
interfaces and adsorbed layers (Robinson, 1986; 
Feidenhans'l, Pedersen, Nielsen, Grey & Johnson, 
1986; Toney et al., 1990; Toney, Gordon et al., 1992; 
Gibbs, Ocko, Zehner & Mochrie, 1988; Sandy, 
Mochrie, Zehner, Huang & Gibbs, 1991). Thus, it is 
imperative to understand the instrumental effects that 
influence these intensities. 

For 2D systems, the determination and interpreta- 
tion of structure factors from the measured intensities 
is well understood for 'in-plane' measurements, i.e. 
those where Q,, the component of the scattering 
vector perpendicular to the surface, is nearly zero 
(Robinson, 1991; Feidenhans'l, 1989; Robinson, 
1988). Likewise, at sufficiently large Qz (->1 A-~), 
structure factors can be accurately determined from 
the intensities measured along surface diffraction rods 
(Gibbs, Ocko, Zehner & Mochrie, 1988; Ocko, Gibbs, 
Huang, Zehner & Mochrie, 1991; Sandy, Mochrie, 
Zehner, Huang & Gibbs, 1991). However, for inter- 
mediate Qz (---0.2-1 A- l ) ,  the connection between 
intensities and structure factors is complicated by 
rapidly varying instrumental effects caused by resolu- 
tion volume anisotropy and partial illumination of 
the sample surface (and viewing by the detector). 
This paper bridges this 'Qz' gap and provides a better 
understanding of these instrumental effects. 

Here, we treat the symmetric four-circle diffraction 
geometry. We first consider a generalized instru- 
mental resolution function, which consists of both 
spatial and angular variables and is necessary for the 
spatially nonuniform beam that we treat. We discuss 
conditions where the angular and spatial parts of this 
function decouple into the usual resolution function 
(dependent only on angular variables) and a more 

Acta Cr.vstallographica Section A 
ISSN 0108-7673 ©1993 



MICHAEL F. TONEY AND DAVID G. WlESLER 625 

general form for the active-area function. These con- 
ditions are reasonably common, which provides good 
justification for the decoupling and the widespread 
use of the usual resolution function. We specify the 
resolution function with a square-wave shape out of 
the scattering plane, but an arbitrary in-plane shape, 
and consider how this resolution function influences 
the measured intensities for specific scans used in 
surface X-ray scattering. We treat scans where the 
component of the scattering vector parallel to the 
surface (QII) is varied but Qz is constant (QII scans) 
and develop an expression to calculate the depen- 
dence of the QII line shape on Oz. Next, we determine 
how the resolution affects the intensity of surface 
diffraction rods in Qz scans and in rocking scans 
(integrated intensities). These permit an accurate 
determination of structure factors from the measured 
intensities for essentially all Qz. Our results are then 
compared with previous treatments (Robinson, 1988; 
Altman, Estrup & Robinson, 1988; Gibbs, Ocko, 
Zehner & Mochrie, 1988; Ocko, Gibbs, Huang, 
Zehner & Mochrie, 1991; Sandy, Mochrie, Zehner, 
Huang & Gibbs, 1991). Following this, we derive an 
expression for the active sample area when the 
incident-beam profile is spatially nonuniform. Last, 
we compare our results with data from an Ag(l l  1) 
surface and find excellent agreement, which supports 
our approach. In our treatment, we assume for sim- 
plicity that the surface scattering can be approxi- 
mately separated into functions of QII and Oz. 
Although this limits our results for QII scans, our 
results for integrated intensities are applicable even 
if this assumption is not completely fulfilled. 

The results obtained in this paper show that by 
simply measuring the line shape in QII scans at small 
Qz, one can accurately predict how the Qlt line shape 
depends on Q~ and how the resolution affects the 
intensity of surface diffraction rods. This is a major 
advantage, because it is not necessary to know the 
details of the resolution function to account for its 
effects; furthermore, our approach applies for 
arbitrary QII line shapes measured at small Qz and is 
valid for essentially all Qz. Thus, our results enable 
an accurate determination of structure factors for 
surface diffraction rods at moderate Qz. Such 
measurements are important in certain 2D systems 
where the scattering intensity does not extend to large 
Qz [e.g. self-assembled monolayers (Samant, Brown 
& Gordon, 1991) and interfacial alloys in metal multi- 
layers (Rabedeau, Toney, Harp, Farrow & Marks, 
1992; Toney, Farrow, Marks, Harp & Rabedeau, 
1992)]. 

Before beginning the body of this paper, it is useful 
to review some of the features of surface diffraction. 
The surface diffraction rods are labeled by the discrete 
indices hk, which refer to the in-plane component of 
the reciprocal-lattice vectors, and by the continuous 

index Qz (Feidenhans'l, 1989; Robinson, 1991; Toney 
& Melroy, 1991). The diffraction rods from a 2D 
crystal are termed Bragg rods. If the 2D crystal is a 
flat monolayer, then its structure factor is a monotonic 
slowly decreasing function of Qz; the decrease arises 
from the Debye-Waller and atomic form factors. If 
the 2D crystal has vertical modulations or consists of 
more than one layer, the Bragg rod intensity will be 
modulated. The rods of scattered intensity from 3D 
crystal surfaces or interfaces are termed crystal 
truncation rods (CTRs) (Robinson, 1986) and the 
intensity profiles along these vary by several orders 
of magnitude. Near the bulk Bragg points, they are 
intense and depend strongly on Q~ but, halfway 
between Bragg points, the CTR intensity is compar- 
able to that from a monolayer and is not strongly 
dependent on Qz. 

II. Instrumental resolution in surface X-ray scattering 

A. Instrumental geometry 

Here we briefly describe the symmetric four-circle 
( w = 0 )  diffraction geometry shown in Fig. l(a) .  
Detailed descriptions are found elsewhere (Busing & 
Levy, 1967; Robinson, 1989; Robinson, 1991; Toney 
& Melroy, 1991). In this geometry, the diffractometer 
operates so that w - 0 - ( 2 0 ) / 2 = 0 ,  where 0 is the 
sample angle and 20 is the scattering angle. The polar 
angle X is the tilt of the sample within the plane 
bisecting the incoming and diffracted X-rays, i.e. it 
is the angle between the sample normal and the nor- 
mal to the scattering plane. The relationship between 
x and the incidence and exit angles of the X-rays 
relative to the sample surface, a and /3, is sin a = 
sin/3 =sin X sin 0. In this geometry, a and /3 are 
equal and, when they are zero, the sample face is 
parallel to the scattering plane. 

For surface X-ray scattering, it is convenient to 
resolve the scattering vector Q into components per- 
pendicular and parallel to the surface, Qzf~ and QII = 
Qx~ + Qy~, respectively, where f~ is the surface normal 
and ~ and ~ are unit vectors parallel to the surface. 
These scattering-vector components are related to the 
diffractometer angles by 

Q=(Q~ + Q~)'/2=(4~/A) sinO 

Q~ = (4v'/A) sin a = Q sinx, 
(1) 

where ,l is the X-ray wavelength. A second coordinate 
system is given by ~, t and ~, where ~ is parallel to 
Q, t is perpendicular to Q but in the scattering plane 
and p is perpendicular to the scattering plane. The 
connection between this coordinate system and the 
sample coordinate system is illustrated in Fig. 1 and 
is given in Appendix A. 
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B. Generalized instrument resolution function 

The instrumental resolution function defines the 
precision in reciprocal space with which Q is deter- 
mined. Previous authors have developed expressions 
for the resolution function with various sources, 
monochromators and analyzers (Cooper & Nathans, 
1967; Pynn, Fuji & Shirane, 1983; Cowley, 1987; 
Lucas, Gartstein & Cowley, 1989), but have always 
considered a spatially uniform incident beam. We 
relax this condition and treat a generalized resolution 
function, which depends on angular and spatial vari- 
ables. We assume that the incident beam is imper- 
fectly collimated and spatially nonuniform, but is 
monochromatic. This last approximation is not 
strictly correct, but we use it for simplicity and 
because we treat systems where the diffraction peak 
widths are broader than the resolution. We do not, 
therefore, expect this approximation to affect our 
results. 

The details of our treatment are given in Appendix 
B, where we derive an expression for the generalized 
resolution function that combines both spatial and 

O=Q~" 
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Fig. 1. (a) Illustration of surface X-ray scattering with the sym- 

metric four-circle geometry. The incident X-ray wave vector is 
kl, the diffracted wave vector is kF and the scattering vector is 
Q. The scattering angle is 20, the sample angle is 0 and the 
azimuthal or crystal rotation angle is q~ (and is negative as 
drawn). The tilt along the plane bisecting the incoming and 
diffracted X-ray beams is the polar angle X. The incidence and 
exit angles are a and ft. The sample and scattering plane coordi- 
nate systems are described, respectively, by ~, ~ and 9. (the sample 
normal), and by ~, t and ~ (~ is not shown). (b) Geometry in the 
plane perpendicular to the sample surface and the scattering 
plane. Note that t is perpendicular to the plane of the page. 

angular variables. Considerable simplification results 
when these variables can be decoupled and this. results 
in the usual resolution function but a general form 
for the active sample area. This decoupling occurs 
when four conditions are met: (i) the sample surface 
is spatially homogenous; (ii) the probability of detect- 
ing a scattered X-ray involves little coupling between 
the position the X-ray scatters from and the direction 
it scatters into; (iii) the incident beam is sufficiently 
well collimated that its spatial profile does not change 
appreciably over the sample area; and (iv) the diver- 
gence of the incident beam is independent of position 
at the sample. Under these consitions, which are 
usually satisfied, the measured intensity is 

I,,(Q)= M(Q) ~ d3q~(q)(d2cr/df~ dA)(Q+q), (2) 

where dEtr/df2 dA is the differential scattering cross 
section per unit area on the surface and is an intrinsic 
function. The usual resolution function (e.g. for a 
spatially uniform incident beam) is 

~(q)  = (1/2k 3 sin 20) ~ d~:~[y~(q~, q,), fl,(~:, qp)] 

x ~[Ys(q~, qt), fl:(~, qp)], (3) 

where the symbols are defined in Table 1 and Appen- 
dix B. The active sample area ~ is the area illuminated 
by the incident beam and viewed by the detector and 
is defined in Appendix B [(72)]. We postpone dis- 
cussion of this until § V. 

In most experimental arrangements, the angular 
flux distribution and the detector probability are 
separable functions of y and fl: ~(%,fl~)= 
~ ( Y , ) ~ ( f l , )  and ~ (ys ,  f l s ) = ~ v ( y s ) ~ ( f l s ) .  In 
such cases, the resolution function is also separable, 
~(q)  = Rst(q~, qt)R,(q,), where 

Rs,(q~, qt)=(1/l~sin20) 

× ~v{(1/2k)[(qJcos 0) -  (qt/sin 0)]} 

×~v{(1/2k)[(qJcos 0) + (qt/sin 0)]} (4) 

Rp(qp)=(1/2k) ~ d~ ,{ (1 /2)[~- (q , /k ) ]}  

x ~,{(1/2)[~+(qp/k)]}. 

C. Application to surface X-ray scattering 

The resolution function can be represented by a 
resolution volume, which is the volume in reciprocal 
space enclosed by the 50% contour of the resolution 
function. We denote the full width at half-maximum 
(FWHM) of the resolution volume along its longest 
axis in the scattering plane by AQs, and the FWHM 
perpendicular to the scattering plane as /tOp. Typi- 
cally, AQst is ---0.0005 A~ -~ for high-resolution instru- 
ments and -0.01 A~-I for lower-resolution instru- 
ments. To increase count rates for surface scattering 
experiments, the angular acceptance of the detector 
perpendicular to the scattering plane is usually coarse, 
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Table 1. List o f  symbols Table 1 (cont.) 

Symbol 
a 
sq(Q) 

b 
DI (D2) 

~(Ys,/3:) 
'(r) 

E(QII, Qz) 
Ehk(Qz) 
F(Q, qp) 
Fhk(Qz) 
F, ( F2) 

9;( y~, 13~) 
~'(r) 

g(t) 
G(Q~ - Ghk ) 
GE ( Qll - Gh~) 

Ghk 
Go, GL, GL2 
H(Qu, %, X) 
HE(QII, qp, X) 
I,,(Q) 
lo(Q) 
J(Q.,,, X) 

JE(Qz, x) 

kt(kF) 
k i (k/) 

L, 
M(r) 
P 
Q 
Qrl 
Qx, Qy, Q~ 
q 

qp, qs, qt 
AQp (AQ~,) 

Q, 
ro 
r 
R(q) 
Rst( q~, q,) 
Rp(qp) 

~pk 

~e (~ , )  

~G 

Sz(Q) 

s,(Q,I ) 

t+ (t -) 

~,~,i 

V(x) 
W(x) 
Wo 
~,~(~) 

Definit ion 
Area of surface unit cell 
Active sample area, including X-ray absorption [(2) and 
(35)] 
Width of squared Lorentzian function [Table 2] 
Spatial detector width perpendicular (parallel) to scattering 
plane [(38)] 
Angular dependent part of A(yy, [3:, r) [(68)] 
Function describing detector spatial acceptance and attenu- 
ation of scattered beam [(37)] 
Integrated intensities in ~p scans [(23) and (26)] 
E(QII, Qz) evaluated at Qll = Ghk [(28)] 
Intermediate function in evaluation of Ira(Q) [(9) and (10)] 
Structure factor of hk surface rod [(20)] 
Rectangular incident-beam size perpendicular (parallel) to 
scattering plane [(39)] 
Angular dependent part of o2crp/oyiOfl~(yi, fl~, r) [(69)] 
Function describing spatial flux distribution of the incident 
beam, including attenuation [(36)] 
Indefinite integral of G(t) [(19) and Table 2] 
In-plane shape of Qfl scan at small Qz [(12)] 
In-plane line shape of integrated intensities at small Qz 
[(24)] 
Surface reciprocal-lattice vector 
Constants in explicit expressions for G(Qx - Ghk) [Table 2] 
Intermediate function in evaluation of F(Q, qp) [(10)] 
Intermediate function in evaluation of E(QI t -Ghk) [(26)] 
Experimentally measured diffraction intensity [(2)] 
r2o~(Q)P/a [(9)] 
Function describing broadening of QII scans with increasing 
Qz [(18)] 
Function describing broadening of E(QII, Qz) with increas- 
ing Qz [(27)] 
Average incident (diffracted) wave vector [(56) and Fig. 1] 
Incident (diffracted) wave vectors that deviate from kt(kF) 
by yi and/3~ (yf and /3/) [(59)] 
Sample radius 
Sample shape function [(35) and (65)] 
Polarization factor [(6)] 
Scattering vector 
Component of Q parallel to surface 
Components of Q along ~, ~ and 
Deviation of detected X-rays from Q [(60), (64) and (2)] 
Component of q along ~, ~ and t [(2) and (60)] 
FWHM of resolution function along ~ (longest axis in the 
scattering plane) 
Value of Q~ where Sz is evaluated [(17)] 
Thompson radius 
Position on sample [(58), (63) and (35)] 
Generalized resolution function [(66)] 
Resolution function in the scattering plane [(4)] 
Resolution function perpendicular to the scattering plane 
[(4) and (5)] 
Resolution correction for peak intensity measurements 
[(22)] 
Resolution correction for integrated intensities in ~ scans 
(to scans), [(28) and (33)] 
Resolution correction for integrated intensities in a Gaussian 
approximation for the resolution function [(34)] 
Scattering function of diffraction rod perpendicular to sur- 
face [(6) and (7)] 
Scattering function of diffraction rod parallel to surface [(6) 
and (7)] 
Positive (negative) integration limit; Qx - Ghk + 
(sin xAQp/2) [(16)] 
Unit vectors perpendicular to scattering plane, parallel to 
Q and perpendicular to Q, but in scattering plane [(55) and 
Fig. 1] 
Function = 1 for x < 1, = 0 for x > 1 
Square-wave function = 1 for Ixl < 1/2, =/9 otherwise 
In-plane FWHM of surface diffraction rod 
Unit vectors parallel (perpendicular) to the sample surface 
[(55) and Fig. 1] 
Angular deviation of incident X-rays from k~ (detected 
X-rays from kF) out of the scattering plane [(59) and Fig. 1] 

Symbol  

Y, (YI) 

a/3: (At:)  

za(3V,/3:, r) 

/.t 
o'l (o'2) 

o- G 
aZo-/oOoA 

O(r) 
Oo 
a2 0 / al,~afl, 
~2 

Definition 
Angular deviation of incident X-rays from k t (detected 
X-rays from k~) in the scattering plane [(59) and Fig. 1] 
Angular acceptance of detector out of (in) the scattering 
plane [(74) and (77)] 
Probability of detecting a scattered X-ray into the detector 
[(64)] 
Linear X-ray absorption coefficient 
Gaussian r.m.s, width of incident beam perpendicular 
(parallel) to scattering plane [(46)] 
r.m.s, width of Gaussian shaped G(Qx- Ghk) [Table 2] 
Differential X-ray scattering cross section per unit surface 
area [(2) and (6)] 
Spatial flux density at sample [(63)] 
Maximum spatial flux density at sample [(73)] 
Angular distribution function of incident X-rays [(63)] 
Angular velocity of a q~ or to scan [(23)] 

AflS~ 10-20 mrad. This is large compared to the 
incident beam's angular spread perpendicular to the 
scattering plane, A f f i x 2 - 5  mrad and, therefore the 
detector acceptance determines the out-of-plane reso- 
lution (AQp=kAflF--O.1 A-~). Thus, the resolution 
volume is much narrower in the scattering plane than 
perpendicular to it. 

The anisotropic shape of the resolution function 
has important consequences in surface X-ray scatter- 
ing. This is shown in Fig. 2, which illustrates the path 
of the resolution volume in a QH scan (constant Q:) 
through a surface diffraction rod at G h k .  For small 
X, the rod and the long part of the resolution volume 
are aligned and overlap for a small range in QII; the 
resulting line shape is narrow. As X increases, the rod 
and broad part of the resolution volume become 
misaligned, resulting in a broadening of the line shape 
and a concomitant reduction in the peak intensity 
(Robinson, 1988). If the rod intensity is approxi- 
mately constant, the resulting line shape will be sym- 
metric. If, however, there is significant variation in 
the intensity along the rod over AQz ~ AQp cos X, then 
the line shape will be asymmetric. As illustrated in 
Figs. 2(a) and (b), this occurs because the resolution 
volume intersects the rod at smaller Q: when Qjj < 
Ghk than when QII > Ghk and, as assumed above, the 
intensity variation with Qz is significant. 

To quantify this behavior, we must have more 
quantitative knowledge of the shape of the resolution 
function. In previous work, Robinson (1988) assumed 
the resolution function was a Gaussian function in 
the in-plane and out-of-plane directions. This is a 
good starting point, but it does not adequately 
describe the resolution function when wide slits are 
used to define the out-of-plane resolution, as is typical 
for surface scattering (Robinson, 1991). In this case, 
the resolution function has an out-of-plane shape that 
is approximately a square wave. For this reason, we 
approximate the out-of-plane resolution as 

Rp( qp) = (1/k) W( qp/ AQp), (5) 
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:~surface 
diffraction 
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/~scattering 
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..~-- intersection 

QII Gh k 
(a) 
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~: rdifoff actiOn 

A Q p J  
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Fig. 2. The path of the resolution volume during a QII scan through 
a surface diffraction rod. The scattering plane is perpendicular 
to the page and intersects the page as shown by the line. The 
widths of the resolution volume along Q and perpendicular to 
the scattering plane are AQs , and AQp and the resolution volume 
is shown by the ellipse. (a) Illustration of the overlap between 
the surface rod and the resolution volume for QII < Ghk" The 
intersection occurs at a position along the rod that is smaller 
than Qz- (b) The overlap for QII > Ghk" The intersection occurs 
at a position larger than Qz. (c) Expanded view of the region 
near the intersection of the rod and the resolution volume, which 
occurs at Qe = Q= + (QII- Ghk)/tan X. 

where W(x) is a square wave function, W(x) = 1 for 
- 1 / 2  < x < 1/2 and W(x) = 0 otherwise. 

We assume that the scattering cross section can be 
separated into two parts: 

d2o-/dOdA=(r2p/a)S~(Q)Sit(Q). (6) 

Here ro is the Thompson radius, a is the area of the 
surface unit cell, P is the polarization factor (Warren, 
1969; Robinson, 1991; Feidenhans' l ,  1989) and Sz(Q) 
and SII(QII ) are  the scattering functions of  the rod 
perpendicular to and parallel to the surface, respec- 
tively: 

I M I S=(Q)= ~. Efi, m(Q) exp(iQ'ri, . ,)  
m=O i 

SII(QII) = ( l / N ) I  ~n=l exp (iQII " r")] 

(7) 

Here, r ,  denotes the position of the nth surface unit 
cell; N is the number of surface unit cells; f,m and 
ri, m are the atomic form factor and the position of 
atoms i, m, respectively; and the sums on n, i and m 
are over the surface unit cells, the atoms in the surface 
unit cell and all the planes in the crystal (e.g. M= 0 
for a monolayer and M = oo for a bulk crystal), respec- 
tively. For crystalline surfaces, SII(Q ) is sharply 
peaked at the surface reciprocal-lattice vectors QII = 
Ghk. In contrast, S=(Q) does not have a strong vari- 
ation with QII and in the remainder of this section 
and in §§ III.A and B we drop the QI[ dependence 
of  Sz and write S~(Qz) because here we consider QII 
in a small range about Ghk. Note that 

dQx dQySil(Q) =47r2/ a, (8) 

where the integration is over a range of about one 
Bragg rod. The assumption of separability made 
above [(6) and (7)] is for mathematical simplicity 
and will be approximately satisfied in many situations 
of interest. If this assumption is incorrect (e.g. vicinal 
surfaces), then the results of §§ I I I . A - C  for peak 
intensity measurements are likely to be inaccurate. 
However, our results for integrated intensities in ~0 
scans (§§ I I I . D - F )  will still apply, provided the in- 
plane shape of d2cr/dJ2 dA does not change sig- 
nificantly for 0<~ Qz < 1 A-1. Independent  of this 
requirement, our results will apply for larger Qz, 
because the broad direction of the resolution function 
effectively integrates (in-plane) over d2o-/d/2 dA (see 
Appendix E.2).* 

* Appendices C, D, E and F have been deposited with the British 
Library Document Supply Centre as Supplementary Publication 
No. SUP55868 (11 pp.). Copies may be obtained through The 
Technical Editor, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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Using the separability of R(q) and d2o-/d~2dA [(4) 
and (7)], one obtains the measured intensity [(2)] as 

Ira(Q) = Io(Q) ~ dqp Rp(qp)F(Q, qp) 

F(Q,  qp) = S dqs dq, R,(q~, q,) 

× Sz(Qz + qp cos X + qs sin x)SII ( Q ' ,  Qy) 

Q" -- Qx + q~ cos q~ cos x - qt sin ~o (9) 

- -  q p  C O S  q9 sin X 
I Qy = Qy + q, sin q~ cos x + q, cos ~p 

- qp sin ~p sin x, 

where Io(Q)= r2osg(Q)P/a, ~o is the crystal rotation 
angle and the transformation of q into sample coor- 
dinates is given in Appendix A. Because the width 
of R~,(q,, q,) is small (AQs,-0.0005-0.01 A -l) and 
Sz(Qz) varies slowly with Qz, F(Q,  qp) can be accur- 
ately approximated by putting Sz before the integral 
and evaluating it at qs = 0. This yields 

F(Q, qp)= Sz(Qz + qp c°sx)H(QII, qp, X) 
(10) 

H(QII, qp, X) = f dqs dq, Rst(qs, q,)SII(Q', Qy). 
We use this approximation throughout the remainder 
of the paper. 

III. Specific diffraction scans 

We consider below three scans that are of particular 
utility in surface X-ray scattering. First, we discuss 
QIP scans where ~o and Qz are held constant while QII 
is scanned through Ghk. Next, we consider rod scans, 
or scans of Qz holding QIJ constant. Last, we treat 
integrated intensities in ~o scans (Qz and QII constant). 
The goals of this section are to predict the Qz depen- 
dence of the line shapes in QII scans and to obtain 
the ideal scattering function Sz(Qz) (the squared 
modulus of the structure factor) from the observed 
intensity. Details are presented in Appendices C - F. 

A. QII scans at small Qz 

Without loss of generality, we consider the case 
where q~ = 0 [e.g. Q = Q(cosx~ + sinxf0]. From (9)- 
(11), 

H( Qx, qp, x) = f dq~ dq, R~,(qs, q,) 

×Sil(Qx+q~cosx-qpsinx;qt ). (11) 

At small X, we can neglect the slight X dependence 
in this equation and H(Qx, qp, X) will be independent 
of qp. This is a good approximation when the error 
made by neglecting X is small compared with the 
width of H(Qx, qp,X)" AQpsinx<<(w~+AQ2st) ~/2, 
where Wo is the FWHM of SII(Qx , Qy). With this 
approximation, the measured intensity [(9) and (10)] 
is 

I,,, (Q) = Io(Q)G(Qx-Ghk) 

xIdqpRp(qp)Sz(Qz+qp) (12) 

G( Qx - Ghk) = I dqs dq, Rs,( qs, qt)Sil( Q,, + qs, qt). 

All the Qx dependence of I,,,(Q) is contained in 
G( Q,,- Ghk), which is sharply peaked at Qx = Ghk 
and has a FWHM of the order (AQ~, + w~) 1/2 [because 
it is the convolution of R~,(qs, q,) and SII(Qx , Qy = 0)]. 
Since Sz(Qz) is a slowly varying function, we approxi- 
mate it as a constant within the integral in (12) and, 
using the square-wave expression for Rp(qp) [(5)], 
we obtain 

I , , , (Q)=[I° (~AOp]sz (Oz)G(Ox-Ghk) .  (13) 

Thus, a QII scan at small Qz has a peak intensity 
proportional to Sz(Qz) and directly measures the 
profile G( Qx - Ghk). 

B. QII scans at larger Qz 

We now consider larger X, but still small enough 
that we can neglect the cosx  dependence in the 
integral for H(Qx, qp,X) [(11)]. This gives 
H(Qx, qp, X )  "" G(Qx - qp sin g - Ghk) ,  with the 
result 

F(Q,  qp) = Sz( Qz + qp cos x )G(  Qx - qp sin X -  Ghk). 
(14) 

This is a major approximation of this subsection and 
we discuss its validity at the end of the subsection. 
Substituting the expression for F (Q,  qp) above and 
the square-wave form for Rp(qp) [(5)] into the 
expression for Ira(Q) [(9)], we find 

AQp/2 

Im(Q)=[Io(Q)/k] f dq~Sz(Qz+qpcosx) 
- AQp/2 

X G( Q x  - qp sin X - Ghl,). (15) 

With reference to Fig. 2(c), this is the integral of the 
product of Sz and the low-Qz line shape G along the 
line defining the center of the resolution volume. It 
is mathematically convenient to change variables to 
t = Qx - qp sin x - Ghk, which gives 

t + 

Im(Q)=[Io(Q)/ksin x] ~ d tG( t )  
- 

t 

XSz{Qz+[(Qx-Ghk- t ) / tanx]} ,  (16) 

where the integration limits are t + = 
Qx-Ghk+(sinxAQp/2) .  Although it is straightfor- 
ward to calculate this integral numerically if Sz is 
known, we can obtain insight into the peak shapes 
in QII scans by approximating Sz as constant over 
the integration range and evaluating it at the peak in 
G(t). This is similar to the approximation used in 
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calculating F(Q,  qp) in (10) and works because Sz 
does not vary appreciably over the integration range. 
When this range includes zero ( t - < 0 <  t+), the peak 
in G(t) occurs at t=  0; otherwise, it occurs at t ÷ (if 
t ÷ < 0) or t -  (if t -  > 0). This is seen in Fig. 2(c) and we 
approximate this behavior with an error function and 
evaluate Sz at 

Q~= Qz+(AQp cos g/2) 

×erf[Trl/Z(Qx-Gh~)/AQpsing ]. (17) 

This form is computationally convenient and gives 
the correct limiting expressions when Qx-Ghk~O 
(e.g. Q~=Q~+(Qz-Ghk)/tang) and when [Qx-  
Ghk >> (singAQp/2) [e.g. Q~= Qz +- (cosxAQp/2)]. 
With this approximation, 

Ir,, (Q) = Io(Q)Sz(Q~)J(Q~, x); 

t+ (18) 
J(Qx, g)=(1/ks ing)  ~ G(t) dt. 

_ 

t 

This expression for Ira(Q) is an important result 
of this section. It shows how to account for changes 
in QII line shapes as Qz increases with no a priori 
knowledge of the in-plane resolution function. One 
first uses QII scans at small Qz to directly measure 
G(t);  this measured profile is then used to calculate 
J(Q~,x) and Ira(Q), using (18). The function 
J(Q~, g) accounts for the broadening of peaks with 
increasing X, whereas S~(Qe) describes the asym- 
metry. For small X, the integration range is small, 
t+~--t - and J(Qx, x)=(AQp/k)G(Qx-Ghk); thus, 
J(Qx, g) and Ira(Q) have the same sharply peaked 
line shape as G. As g becomes larger, the integration 
range becomes larger and J(Qx, g) evolves into a 
broad relatively flat-topped function that is nonzero 
for [Qx-Ghkl<~(AQpsing)/2. Thus, for large 
X, I,,,(Q) is broad and if Sz(Q~) depends on Q~ over 
the range where J(Qx, g) is nonzero [[Q~-Qz[< 
(AQp/2) cos g],  I,,,(Q) will be asymmetric. 

It is useful to evaluate Ira(Q) [(18)] for several 
specific G(t) ,  since this will illustrate some of the 
general features of the expression for I, ,(Q). 
Gaussian and Lorentzian shapes are chosen because 
they are analytically simple, while a Lorentzian 
squared is chosen because it fits our data for Ag(111). 
The results are summarized as 

Ir,,(Q)=[Io(Q)Sz(Q~)/k sin x][g(t+)-g(t-)], (19) 

where the functions g(t) are the indefinite integrals 
of G(t) and are given in Table 2. Here tro is the 
Gaussian root-mean-square (r.m.s.) width, b is the 
width of the Lorentzian (Lorentzian squared) and 
t ÷ and t-  are given above. As shown in Appendix 
D.1, Go, GL2 and GL depend on Wo, 20, the sample 
mosaic, the acceptance of the detector and the spatial 
flux of the incident beam. If these do not vary appreci- 

ably over the rod measurement, we can approximate 
GG, GL2 and GL as constant. Appendix D.1 also 
shows that b and o-o have a small dependence on g 
that we do not consider. 

To obtain Ira(Q) [(18)], the major approximation 
of this section was the neglection of the cos X depen- 
dence in the expression for H(Qx, qp, X) [(11)]. This 
is valid provided the error from this approximation 
is small compared with the width of G [i.e. AQs,(1 - 
cos X)<< (w~+AQ~t)~/2]. This will certainly be true 
when at least one of two conditions is met: (i) the 
in-plane resolution AQ~, is much smaller than the 
scattering-function width w0; or (ii) cosg is not too 
different from 1. However, the expression for Im(Q) 
in (18) is valid under much more general conditions 
than this. As shown in Appendix D.1, (18) is an 
excellent approximation for essentially all g. We 
expect the approximation to be less good (errors of 
- 15-20%) only for sing > (w2+ AQ2s,)I/2/2AQs, and 
then only in the small region 

(AQpsin g)/2-(wg + AQ~,) '/2 

<<- [ Q~- G;,kl 

< (AQp sin g)/2 + (wg + AQ~,) '/2. 

C. Qz scans 

In the preceding subsections, we considered how 
the anisotropic shape of the resolution function 
causes a broadening of the line shape in QII scans. 
The concomitant reduction in the peak intensity must 
be accounted for when using measured intensities to 
calculate structure factors: 

M 

Fhk(Qz) = ~ Ef.m(Q) exp(iGhk'r,.m) 
m = 0  i 

× exp (iQz~" r,.~). (20) 

The symbols are defined in § II .C and the structure 
factor is related to the scattering function by 

Sz(G,,k, Oz)=lfhk(Qz)l 2. (21) 

In this and the following subsections, we discuss 
how to obtain the magnitude of the structure factor 
from measured intensities. We first consider Qz scans, 
which measure the Qz dependence of the peak 
intensity of the surface rod lhk(Qz)--Im(Ghk, Qz). 
With reference to (18) and (21), we see that 

Ihk(Qz) = Io(Ghk, Qz)J(Ghk, X)lFhk(Qz)[ 2. (22) 

This states that a measurement along the surface rod 
yields an intensity that is just [Fhk(Q~)[2 scaled by a 
geometric factor lo(Q) and the function J(Ghk,X). 
As with (18) for Ira(Q), the expression above will be 
an excellent approximation for essentially all X. 
Similar to Robinson (1988), we define the resolution 
correction ~pk =J(Ghk,X), which accounts for the 
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Table 2. The indefinite integrals [g(t)] and FWHM of the in-plane line shapes [G(t)] that are Gaussian, Lorentzian 
and Lorentzian squared 

Gaussian Lorentzian Lorentzian squared 
G( t) ( GG/o'G) exp  ( - 1 2 / 2 0 " 2 )  Gzb/(b2 + /2) GL2b3/(b2 + 12)2 
g(t) [(21r)l/2Gc/2] erf(t/21/ZcrG) GLtan -l (t/b) (Gz2/2)[tb/(t2+b2)+tan l(t/b)] 
FWHM 23/2 (in 2) l/2tr~ 2b 2(21/2 - l)J/2b 

intensity reduction caused by the anisotropic resolu- 
tion function. The subscript pk indicates that this is 
for peak intensity measurements in Qz scans. ~pk 
depends on the empirical function G(Qx-Ghk) and 
so to calculate structure factors from Q~ scans one 
must first determine G(Q,,-Ghk) from QII scans at 
small Qz. 

D. q~ scans at small Qz 

Peak intensity measurements of the surface rod are 
sensitive to possible changes in the mosaic structure 
of the rod at different Qz. To minimize the impact of 
the mosaic structure, one measures the integrated 
intensities in to or ~o scans (Robinson, 1986, 1988; 
Feidenhans'l, 1989; Lucas et al., 1988; Kashihara, 
Kimura & Harada, 1989; Sandy, Mochrie, Zehner, 
Huang & Gibbs, 1991; Ocko, Gibbs, Huang, Zehner 
& Mochrie, 1991), where the intensity is measured 
while either to or ~ is varied but Qz and QII are 
constant. In this and the following subsection, we 
consider q~ scans where in-plane detector resolution 
is not large (AQ~, ~ 0.05 ]k -~) and not all the intensity 
along QII is collected. We postpone until § I I I .F  treat- 
ment of the case where the in-plane detector resolu- 
tion is sufficiently coarse for all the intensity along 
QII to be collected. Appendix E considers large Qz 
where the broad direction of the resolution function 
effectively integrates SII(QII) in QII" 

In this calculation, we use an approach similar to 
that of Warren (1969) [see also Robinson (1991) and 
Feidenhans'l (1989)] and denote the angular velocity 
of the q~ scan as 1-2 = dq~/dt. The intensity is integrated 
along QII = QII( c°s g~x+ sin g,~) and for most samples 
the active area ,if(Q) is either independent of ~ or 
varies so slowly that it can be approximated as con- 
stant. Making the same assumption that X ~ 0 as in 
§I I I .A [AQpsinx<<(w2+AQ2t)l/2] and using the 
expression for I, ,(Q) in (9) and (10), we obtain the 
integrated intensity 

E(QII, Q~)=(1/J"2)fdq~Im(Q) 

= [Io(QII, Qz)/S2Q]f dqpRp(qp) 

xSz(Qz+qp)Ge(Qii-Ghk), (23) 

where 

Ge(Qrl- Ghk) = f dq, dq, Rst(q,, q,)f d(Qil~0) 

x SII{[ (QII + qs) cos~p - q, sin ~p]; 

[(QLI + qs) sin ~0 + qt cos q~]}. (24) 

As in § III.A, we use the good approximation that 
Sz(Qz) is a slowly varying function to put this in front 
of the integral in (23). We also use the square-wave 
expression for Rp(qp)  and obtain 

E ( QIr, Q~) = [ Io( QII, Qz) A Qp/kd2Qii] 

x Sz(Qz)GE( QjI- Ghk). (25) 

The function Ge(QII-Ghk) is analogous to G(Q,,-  
Ghk) and can be empirically obtained from the 
integrated intensities at small Q= for different QII near 
Ghk • 

E. ~o scans at larger Qz 

For larger Qz, we make the same approximations as 
in §§ III.A and B. Referring to the expression for 
I, ,(Q) in (9) and (10), we write 

E(QIL , Oz)=[Io(OLi, Oz)/g2Oll] ~ dqp Rp(qp) 

x Sz(Qz + qpcosx)H¢(Qrl, Q~, qp) 

H~(QjI, qp, X) = j " dqs dq, R~t(qs, q,) ~ O(QII~p) 

x Sji ( Q ' ,  Qy) 
(26) 

Q'x = (QII + q~ cosy - qp siny) cos ~p - q, sin q~ 

Q'y = (QII + qscosx - qpsinx) sin ~p + q, cos ~o. 

Following § III.B, we assume that cos x can be 
approximated by 1 in the expressions above, with 
the result HE(QII, qp, X)---- GE(QIr- qp s i n x -  Ghk). 
Using this, the top equation above is analogous to 
(15) for I, ,(Q) and following arguments similar to 
those after (15), we have 

E(Qrl, Q~) = [Io(Qii, Q~)/2k.O sin 0 cos X] 

x S~(Qe)JE( Qll, X); (27) 

t + 

Je(Qi l ,X)=(1/ks inx)  ~ GE(t) dt, - t 

where we have used QII = 2 k  sin 0 cos X. To obtain 
the structure factor, we consider E(QIf, Qz) at the 
peak of the surface rod (Qrl = Ghk): 

Ehk(Qz)=[Io(Ghk, Qz)/S2]lFhk(Q~)l 2 

X [(1/2k 2 sin a cos X) 

(sin X~Qp)/2 
x Ge(t) dt]. (28) 

- ( s i n  XAQp)/2 
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As with the expressions for Ira(Q) in § Ill.B, the two 
equations above are excellent approximations for 
essentially all ,t' (see also Appendix D.1). The term 
in brackets is ~ ,  the resolution correction for 
integrated intensities in ~ scans. For integrated 
intensities in to scans, the cos X in this expression is 
absent and the resolution correction is ~,o = ~ cos A:. 
The difference between ~,o and ~E is due to the 
different scan trajectories in reciprocal space. 

To calculate IFhk(Qz)l using ~E, it is necessary to 
determine GE(QII--Ghk) from measurements of the 
integrated intensities at low Qz, as described above. 
This procedure is, unfortunately, tedious and time 
consuming. However, in some cases to be described 
below, GE(QII--Ghk) is approximately proportional 
to G(Qx - Ghk) and this can be used instead to calcu- 
late ~E (to within a constant). Since G(Qx-  Ghk) is 
simply measured with a few QIt scans at small Qz, 
proportionality between GE(QII--Ghk) and G(Qx-  
Ghk) results in a tremendous simplification. 

One such condition where GE (QII- Ghk) is propor- 
tional to G(Qx--Ghk) is if the in-plane scattering 
function separates into longitudinal and transverse 
components: SIl(Qx, Qy)= Sx(Qx)Sy(Qy). When this 
is true, 

GE(QII--Ghk)=~ dqs dqtRst(q~, q,) 

x S~(QII + q~) ~ d(Qil~p)Sy(Qil~ + qt) 

= c~ ~ dq~ dqt R~t(q~, qt)Sx(Qii + q~) 
(29) 

and 

G( Qx - Ghk) = ~ dqs dqt R~t(q~, qt)Sx( Q~ + q~)Sy(qt), 
(30) 

where we have neglected the curvature in the Ewald 
sphere (~p << 1) and second-order terms in the small 
quantities ~p, qp and q~. That the second integral in 
the top equation of (29) is just a constant (c~) follows 
from the definition of Sil(Qx, Qy) [(7)]. If Sy(q,) is 
approximately constant over the range in q, where 
R~t(qs, qt) is large (e.g. the transverse width of the 
surface diffraction is broader than the resolution), 
then these equations show that GE(QII--Ghk) is 
approximately proportional to G( Qx - Ghk)" 

Ge(QII-Ghk)=[c~/Sy(O)]G(Qx-Ghk). Alterna- 
tively, if R~t is separable, R~t(q~, qt)~-R~(q~)R,(qt), 
we have 

GE( QII - Ghk) = C~[~ dqt Rt( qt)] 

× [~ dq~ Rs(q~)Sx( QII + q~)] 

G( Qx - Ghk) = [~ dqt gr( qt)Sy( qt) ] 

x[~ dq~g~(q~)Sx(Qil+q~)] (31) 

and GE(QII--Ghk) is again approximately propor- 
tional to G(Qx-Ghk). The separability of R~t(q~, q,) 

will approximately be satisfied, as long as the in-plane 
angular spread of the incident X-rays is not grossly 
different from the in-plane angular acceptance of the 
detector. This is not too restrictive and thus, in many 
cases, Ge(Qtt- Ghk) will be approximately propor- 
tional to G(Qx-Ghk) and G(Qx-  Ghk) can be used 
to calculate ~e .  

F. ¢p scans with poor detector resolution 

Last, we consider measurements of the integrated 
intensity in ~p scans when the in-plane detector reso- 
lution is sufficiently coarse that all the intensity along 
QII is collected for all Qz. Because the in-plane peak 
width becomes quite large as g increases, this type 
of scan requires very coarse in-plane detector 
resolution, AQst>~AQpsinXmax, where ,¥max is the 
maximum value of X in the measurement. Con- 
sequently, this type of scan is not often used. The 
calculation of the total integrated intensity is outlined 
in Appendix F and the result is 

Ehk(Qz) = {47r2r~P~(Q)/a21-2} ]Fhk( Qz)] 2 

X [AQp/k 3 sin 20 cos 2 X]. (32) 

Here, the resolution correction (the term in 
square brackets) is the same as the usual Lorentz 
factor (Warren, 1969), except for the cos2x term, 
which results from the trajectory of the ~p scan and 
the fact that the surface diffraction is a rod, not a 
point. At small Qz, cos x = 1 and this agrees with 
expressions obtained previously for surface diffrac- 
tion at small Qz (Feidenhans'l, 1989; Robinson, 
1991). 

IV. Discussion of the resolution correction and 
comparison with previous calculations 

At this point, it is instructive to evaluate the resolution 
correction for typical experimental arrangements and 
to compare it with previous calculations (Robinson, 
1988; Ocko, Gibbs, Huang, Zehner & Mochrie, 1991; 
Sandy, Mochrie, Zehner, Huang & Gibbs, 1991). We 
assume a Gaussian function for GE(Qx-Ghk) and 
consider the resolution correction for integrated 
intensities ~E; but note that ~l~pk will have approxi- 
mately the same form as ~E whenever GE(Q,-  Ghk) 

is proportional to G(Qx-  G~k). 
As shown in Appendix D.2, the resolution correc- 

tion for this situation is 

~E(X) = (1/sin a cos X) erf (AQp sin X/23/2trG), (33) 

where Oo is the r.m.s, width of GE(t) and we have 
neglected unimportant constant factors. Although o-~ 
actually has a small dependence on X, this can be 
neglected to a good approximation. The dot-dashed 
line in Fig. 3 shows ~E using values of O'G and AQp 
comparable to those for our experiments on Ag( l l  1) 
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(Toney et al., 1990; Toney, Gordon et al., 1992) (see 
caption for details). For large Q~, ~ e  falls off as 
1/sin a c o s x  and is small because the overlap 
between the surface diffraction rod and the resolution 
volume is small (see Fig. 2). In contrast, ~E is large 
when Qz is small and, in particular, ~E(Qz=O) is of  
the order AQp/CrG. To compare our results with pre- 
vious calculations, we must use the resolution correc- 
tion for to scans ~t~, = ~ e  cos X, since these calcula- 
tions were for to scans. The solid line in Fig. 3 shows 
~o, [using (33)] for our treatment. 

Robinson (1988) calculated the resolution correc- 
tion assuming R(q) is Gaussian in both the in-plane 
and out-of-plane directions and found 

~G {[2(W 2 _2,1/2 = + Aq,,,, cos O]/Aq,.Aq,} 

x {[(aqoAq,) /s in 20 ] / [  Wo ~ + (Aqr COS X) = 

+ (aq ,  sin X)z] 1/2}, (34) 

where the subscript G denotes the Gaussian approxi- 
mation; Aq~ and Aq~ are the out-of-plane F W H M  
and in-plane F W H M  of the resolution function, 

30 K- ~ I I I I 

2O 

10 
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Fig. 3. Different calculations of the resolution correction ~ for a 
(10Qz) CTR from Ag(lll). The dot-dashed line shows ~te for 
integrated intensities in ~0 scans when the resolution function 
out of the scattering plane has a square-wave shape and the 
in-plane line shape is a Gaussian function [(33)]. The widths of 
the resolution function and the surface diffraction peak are 
AQp=0.048 and ~rc=0.0027r.l.u. (reciprocal-lattice units). 
These are comparable to the widths we have found for Ag(111) 
(see § VI and Fig. 6). The solid line shows ~o~ = 9~E COS X, the 
resolution correction for to scans. The dashed line shows gtc 
calculated with the assumption of a Gaussian-shaped resolution 
function both parallel and perpendicular to the scattering plane 
[(34)]. To compare this with 9~0,, we have set the out-of-plane 
FWHM as Aqo=zaQp=O.O48r.l.u., the in-plane FWHM as 
Aq= AQ,,=0.0021 r.l.u, and the FWHM of the surface diffrac- 
tion peak as Wo=0.0061 r.l.u. The dotted line shows the large-2' 
limit o f~(=  1/sina), as calculated by Sandy, Mochrie, Zehner, 
Huang & Gibbs (1991) and Ocko, Gibbs, Huang, Zehner & 
Mochrie (1991) and in Appendix E. 

respectively; and the term [2(w02 + Aq2) 1/2 x 
cos O]/AqrAqo normalizes ~G in the same 
manner  as ~ ( ~ G  sin a = 1 for large Qz). To be con- 
sistent with our definitions, the expression for ~G 
includes a Lorentz factor (1 / s in20)  as used by 
Robinson (1988). The dashed line in Fig. 3 shows ~G 
using the same FWHMs as in the calculation of  ~ ,  
(see caption). The two forms for the resolution correc- 
tion are similar for large Qz, but differ for Qz <- 1 • -1 

In Sandy, Mochrie, Zehner, Huang & Gibbs (1991) 
and Ocko, Gibbs, Huang, Zehner  & Mochrie (1991), 
the resolution correction for Qz scans has been calcu- 
lated when 2' is large [i.e. zaQp sin x >> (Wo2+ AQ2,) 1/2] 
and when the in-plane resolution is coarse compared 
to the width of the scattering function. For this case, 
the functional form for the resolution correction is 
simply 1/sin ce and is shown by the dotted line in 
Fig. 3. This agrees with ~o~ for most X, but differs for 
Qz ~< 0.5 A- I .  One can use (33) to estimate the value 
of X where the I / s in  a form is no longer valid and 
if we permit a 10% error, this is X =  
sin-l(3.31O'G/AQp). In Appendix E.1, we reproduce 
the results of  Sandy, Mochrie, Zehner, Huang & 
Gibbs (1991) and Ocko, Gibbs, Huang, Zehner & 
Mochrie (1991) and also show that ~ ,  has the same 
I /s in  a functional form for large X. 

V.  A c t i v e  s a m p l e  a r e a  

We now turn our attention to the evaluation of  the 
active sample area, defined in Appendix B [(72)] as 

~ ( Q )  = ~ d2r ~ ' ( r )  M ( r ) ~ ' ( r ) .  (35) 

The factors inside the integral represent the probabil- 
ity of having an X-ray scattered at the sample position 
r and registered in the detector. This is governed by 
three effects: (1) the flux at r, which depends on the 
spatial flux distribution of the incident beam and the 
attenuation of  the incident beam in reaching r, given 
by ~ ' ( r ) ;  (2) the probability of there being sample 
at r, given by M(r ) ;  and (3) the chance of  detection, 
which depends on the detector spatial acceptance and 
the attenuation of the scattered beam, given by @'(r). 

Because the incident spatial flux distribution is 
typically a separable function in the two directions 
perpendicular  to the beam direction kt, we have 

~'(r)  = ~ ( r .  ~ ) ~ [ r -  (kz x~/k) ]  

x e x p  [ -  i p.(r') dr ' ] ,  (36) 
s o u r c e  

where the integral is evaluated along the path from 
the source to r and ~( r ' )  is the linear absorption 
coefficient. In this expression and those that follow, 
we use the convention that the subscripts 1 and 2 
refer to directions perpendicular  to and in the scatter- 
ing plane, respectively. An analogous expression 
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holds for the detector: 

~ ' ( r )  = ~ ( r - ~ ) ~ ; [ r -  (kF x ~/k)]  

[ detector ] 
x exp - /x(r') dr'  , (37) i- 

where the integral is evaluated along the path from 
r to the detector. Appendix A gives the dot products 
in (36) and (37). 

Although arbitrary sample shape functions M(r)  
may be treated, we limit ourselves to the analytically 
simple case of a two-dimensional circular sample with 
radius L,. With this geometry, M(r)  = V(r/Ls), where 
r = (xE+y2) 1/2 is the sample radius and V(x) = 1 for 
x <1, V(x)= 0 otherwise. We also only consider the 
case of a uniformly absorbing material of linear 
absorption coefficient /x covering the sample to a 
thickness T. This is particularly relevant to our 
electrochemical experiments described in § VI. Other 
geometries, though, are easily treated. Given the 
assumptions above and taking ~0 = 0 (which is done 
without loss of generality, because the sample is cir- 
cular), the active area is 

M(Q)=(exp-2tzT/sin a) ~ dx dy ~'~(-x sin X) 

x ~ ( x  cos 0 cos X - Y  sin O) 

X V[(x2+yZ)X/Z/L,]W(-x sin x/D,)  

x W[(x cos 0 cos X +Y sin 0)/D2]. (38) 

Here we have replaced the detector spatial acceptance 
with square-wave functions limiting the area viewed 
by the detector to DI and D2 perpendicular and 
parallel to the scattering plane, respectively. It is usual 
to set D~ larger than the beam size perpendicular to 
the scattering plane. This ensures that all the scattered 
X-rays are detected. Thus, the square-wave function 
involving D1 is unity over the (x, y) of interest and 
can be dropped. 

One can explicitly measure the spatial flux distribu- 
tion of the incident beam by scanning a pin-hole 
across the beam at the sample position. This empirical 
function can then be introduced into (38) to determine 
~¢(Q). In what follows, however, we shall evaluate 
the expression above for two simple cases of practical 
interest. We first assume a uniform rectangular profile 
for the incident flux and calculate the active area for 
several limiting cases of incident-beam size, detector 
spatial acceptance and sample size. In the second 
example, we assume a Gaussian profile for the 
incident-flux distribution. 

A. Uniform rectangular flux distribution 

When the spatial flux density at the sample is a 
uniform rectangular beam of dimensions G and F2 
perpendicular and parallel to the scattering plane, we 
have 

~ ( Q )  = [exp (-2/xT/s in  a)]~ dx dy W(-x  sin X~ FI) 

x W[(x cos 0 cos X - Y  sin O)/F2] 

x V[(xZ+y2)'/2/Ls] 

x W [ (x cos 0 cos X + Y sin 0)//92]. (39) 

The integral in this equation represents the intersec- 
tion of three areas, as illustrated schematically in Fig. 
4. These areas are (1) the incident spatial flux, given 
by the first two square-wave (or W) functions; (2) 
the sample size, given by the V function; and (3) the 
detector acceptance area, defined by the final W func- 
tion. The integral can be evaluated for an arbitrary 
situation, but we consider cases where the incident- 
beam size defines the active sample area along the 
direction perpendicular to the beam. This requires 
that the projected incident-beam size in this direction 
is smaller than both the sample extent and the detector 
spatial acceptance projected onto the sample surface: 
Fzcos a / c o s x  << 2Ls and D2 cos a / cosx .  This is 
usually the case in surface X-ray scattering (as long 
as X is not near 90°). Below, we treat three cases 
where along the incident beam ~¢ is determined by 
(1) the incident-beam size, (2) the detector spatial 
acceptance or (3) the sample size. 

(1) Limiting incident-beam size. The projected 
length of the incident beam onto the sample is smaller 
than both the sample extent and the projection of the 
detector spatial acceptance onto the sample. This 
requires 

El(COS 2 0COS2X "k- sin 2 0)1/2/sin a < 2L~ 

and 

G/sin a < b2/cos xsin 20, (40) 

which can be the case if g and 20 are not too small. 
The active area is the area of the incident flux 
parallelogram (see Fig. 4a) and 

~¢(Q) = [exp ( - 2 ~ T / s i n  a)]j" dx dy W(-x  sin X~ F1) 

x W[(x cos 0 cos A' - Y  sin O)/F2] 

=(F1F2/sin a)[exp ( -2p.T/s in  a)].  (41) 

(2) Limiting incident-beam s&e and detector spatial 
acceptance. In this common experimental configur- 
ation, the spatial acceptance of the detector defines 
the active area along the length of the incident beam. 
This situation is shown in Fig. 4(b) and requires that 
the projected detector spatial acceptance is smaller 
than both the projected incident-beam length and the 
sample extent: 

D2(COS 2 0COS2 ¥ n t- sin 20)~/2/cosxsin20 < 2Ls 

and 

D2/cos xsin 20 <_ F1/sin a. (42) 
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This can be the case for small X but not too small 
20 and 

M (Q) = [ exp (-2/x T~ sin a ) ] ~ dx dy 

x W[(x cos 0 cos X - y  sin O)/F2] 

x W[(x  cos 0 cos X + y  sin O)/D2] 

= (F2D2/sin 20 cos x)[exp ( -2 /xT / s in  a)] .  

(43) 

which applies for small X but not too large 20. This 
configuration is shown in Fig. 4(c) and 

M ( Q ) = [ e x p ( - 2 t z T / s i n  o~)]J dx dy 

x V[(x2+y2) ' /2/L,]  

x W[(x  cos 0 cos X - Y  sin O)/F2] 

= 2LsFz/(cos 2 0 cos 2 x + s i n  2 0) 1/2 

x [exp  ( -2 /xT / s in  a)] .  (45) 

(3) Limiting incident-beam size and sample size. 
Here, the sample size limits the active area along the 
length of the incident beam. Thus, the sample extent 
is smaller than both the projected detector spatial 
acceptance and the projected incident-beam length: 

2Ls ~< F l ( c o s  2 0 cos  2 x + s i n  2 0 ) l / 2 / s i n  a 

and 

2Ls < . D2(cos 2 0 cos 2 x + s i n  2 0)~/2/cos X sin 20, (44) 

B. Gaussian flux distribution 

We now consider the case where the incident spatial 
flux distribution has a smoothly varying shape rather 
than the sharp form assumed above. This is appropri- 
ate for focusing optics when tightly set slits are not 
used to define the beam size. We further assume that 
the spatial flux distribution is a Gaussian function, 
since this is appropriate to our measurements. The 
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Fig. 4. Illustration of the active sample area M, the area of the sample that is illuminated by the incident beam and viewed by the detector. 
The case of a rectangular incident beam is is shown in (a), (b) and (c), while (d) corresponds to a Gaussian incident beam. The circular 
sample has a radius L, and the area enclosed by the long-dashed lines is that viewed by the detector. In (a), (b) and (c), the parallelogram 
is the area illuminated by the incident beam and the region enclosed by the bold lines is the active area. (a) Limiting incident-beam size 
(case 1). The active area is the product of the base and height of the incident-beam parallelogram: (F2/sin 8)x (F,/sing). (b) Limiting 
incident-beam size and detector spatial acceptance (case 2). The active area is the product of the base and height of the incident-beam 
parallelogram as cut off by the detector: [Fdcos 8 cosx) x (Dd2 sin 8). (e) Limiting incident-beam size and sample size (case 3). The active 
area is the product of the base and height of the incident-beam parallelogram as cut off by the sample: [F2/(cos 2 0cos2x + sin 2 O) ''2] x 2L,. 
(d) Gaussian incident beam. The ellipse represents a contour of constant spatial flux density. 
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generalization to other functional forms is straight- 
forward. 

With these assumptions, the incident spatial flux 
distribution is 

~r'(r) =exp [ - ( r .  ~)2/20.2] 

xexp { - [ r .  (k ,x  ~/k)]2/Z0.Zz} 

x[exp ( - txT/s in  a)].  (46) 

where 0.1 and 0"2 are the r.m.s, widths of the incident 
beam perpendicular and parallel to the scattering 
plane. The physical situation that results from this 
spatial flux distribution is similar to that for the rec- 
tangular beam. However, the bold lines in Fig. 4 are 
no longer sharp boundaries, but represent the width 
of a smooth distribution. We evaluate ~¢ for the case 
where the projected detector size is smaller than the 
sample length [(42), see Fig. 4d] and later give results 
for the opposite situation. From (38) and (46), we 
have 

~ ( Q )  = ~ dx dy exp [ - ( x  sin X)2/20. 2] 

x exp [ - ( x  cos 0 cos X - Y  sin 0)z/20.~] 

x W[(x cos 0 cos X +Y sin 0)/D2], (47) 

where we have dropped the absorption factor for 
brevity but will include it at the end of the calculation. 
To evaluate this integral, we change variables to 

u = (x cos 0 cos X +Y sin O)/(cos 2 0 COS 2 )( + sin 2 O) 1/2 

v = (x sin 0 - y  cos 0 cos X)/(cos 2 0 cosZ,¥ + sin 2 O)I/2, 

with the result 

M(Q) = ~ du W[u(cos 2 0 cos 2 g + sin2 0)1/2/D2] 

x J dv exp ( - f i x ( u ,  v) sin X]2/20. 2} 

- f i x ( u ,  v) cos 0 cos x 

- y(u, v) sin 012/20.2}), 

(48) 

(49) 

where x(u, v) and y(u, v) are the inverse of the trans- 
formations given in (48). The integration range for u 
is determined by the W function and is + D ; =  
+Dz/2(cos 2 0 cos zX+sin  2 0)u2. The integration 
range over v can be taken as infinite because v is 
orthogonal to u and kF (see Fig. 4d) and since we 
have assumed that the sample is much larger than 
the incident-beam size (L~ >> 0.~, 0.2). Thus, 

~ / (Q)=  f du d v e x p ( - {  [x(u'v) sinX]2} 
20.~ 

--D~ -co 

_ { I x ( u ,  v)cos 0 cos X - y ( u ,  v)sin 0]2}) 

20.~ 

= (2~r0.,0.2/sin a)[exp ( -2 tzT/s in  a)]  

x erf {(D2 sin o:/23/20" 1 COS X sin 20) 

x[ l  +(0.Z2tanZ g/40.~cos2 0)]-~/2}, (50) 

where we have included the absorption factor in the 
last line and have skipped the algebraically tedious 
details. 

Equation (50) leads to identical results as the uni- 
form rectangular distribution in two limiting cases. 
First, when the projected beam size is much smaller 
than the projection of the detector spatial acceptance 
[i.e. 0.~/(sin a)  << D2/(cos,¥ sin 20)], the argument 
of the error function is large and . if= 
(2¢r0.,0.2/sin a)  exp ( -2 /zT/s in  a).  If we identify the 
beam widths as Fi = (27r)1/20.i (with i=  1, 2), this is 
precisely the expression given in (41) for a rectangular 
beam under the same limiting conditions. Second, 
when the opposite situation holds [i.e. 0.,/(sin a)  >> 
D2/(cos g sin 20)], the argument of the error function 
is small and 

~¢ = [(27r)'/20.2D2/(cos X sin 20)] exp ( -2 tzT/s in  a) ,  

which is the same as for a rectangular beam under 
the same conditions [(43)]. 

In this subsection, we have assumed that the sample 
length is larger than the projected length viewed by 
the detector. If the opposite is true, then to evaluate 
.ff we follow the procedure given above except that 
W is replaced by V in (49). As a consequence, one 
of the variables we change to is along the projection 
of k, onto the sample surface. The integration over 
this variable is from -Ls  to +Ls, while the integration 
over the orthogonal variable runs from -oo to +oo. 
The result is that D2/(cosxsin20)  should be 
replaced by LJ[ ( s in  2 0+cos2 X cos 2 0) 1/2] in (50). 

Vl. Application to Ag(l 11) 

We now apply the results of the previous sections to 
data we have obtained on Ag(111) electrode surfaces. 
These data consist of QII and Qz scans and were taken 
from A g ( l l l )  substrates that were either 'bare' or 
covered with an incommensurate monolayer of thal- 
lium (Toney et al., 1990; Toney, Gordon et al., 1992). 

A. Experimental aspects and crystal truncation rod 
scattering 

The data were collected at the National Syn- 
chrotron Light Source (NSLS) on beam line X20A. 
An incident X-ray energy of 9997 eV (A = 1.240/~) 
was selected using an Si(111) double monochromator. 
Approximately 4 mrad of X-radiation were collec- 
ted from a bending magnet and focused onto the 
sample. By scanning a pinhole across the incident 
beam, we measured the spatial flux distribution of 
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the incident beam at the sample and found that this 
could be approximated by a Gaussian function with 
r.m.s, widths tr2 -- 0.33 and oh - 0.73 mm (vertical and 
horizontal, respectively). The diffracted beam was 
analyzed with 1 mrad Soller slits (AQs, = 0.005 ]k -1) 
and the acceptance of the diffracted beam out of the 
scattering plane was defined by wide slits to be 
---24 mrad. The sample was aligned using bulk reflec- 
tions and data were obtained in the symmetric four- 
circle mode (Busing & Levy, 1967). The Ag(111) 
substrates were epitaxially grown thin films of silver 
vapor deposited onto freshly cleaved mica (Samant, 
Toney, Borges, Blum & Melroy, 1988a, b). They had 
a diameter of 2Ls = 21 mm and showed both A B C  
and CBA stacking (Toney et al., 1990). During the 
measurements, the substrates were covered with a 
thin (_< 30 Ixm) layer of electrolyte. For the data pre- 
sented below, the reciprocal lattice is indexed relative 
to the pseudohexagonal cell with a* = 2.511 and c* -- 
0.8878 *-1 .  Other experimental details can be found 
in Toney, Gordon et al. (1992). 

In the Introduction, we discussed diffraction from 
a 2D crystal and surfaces of 3D crystals. Recall that 
for crystal truncation rods (CTRs) the structure factor 
varies significantly with Q~ and the variations contain 
information about the surface morphology. For a 
crystal surface that has atomic-scale roughness (e.g. 
steps), Robinson (1986) introduced a convenient real- 
space model to describe the CTR structure factor. 
This model allows partially filled substrate layers with 
a fractional occupancy /3 per layer (0 </3 < 1) and 
with it the CTR structure factor for the (111) surface 
of a f.c.c, crystal is 

S z ( Q z )  = IF.k(Qz) 2 

=[(1- /3)2 / (1  + /3z -  2/3 cos S)] 

x f ~ ( Q ) / ( 1 - e x p  iS) 2, (51) 

where S =  (27r/3)(h- k) + CQz, C is the spacing 
between (111) planes and fs(Q) is the atomic form 
factor of the substrate atoms. Since this model 
adequately describes our data for Ag(111) (Toney et 
aL, 1990), we use it hereafter. 

B. Resolution-function effects in QII scans 

Fig. 5 shows QII scans of a silver CTR at several Qz, 
when no thallium is adsorbed on the silver surface. 
There are Bragg peaks at both Q= = 1 and Q==2 
reciprocal-lattice units (r.l.u.) because the thin-film 
substrates have both ABC and CBA stacking [i.e. 
the data contain contributions from the (10Q,) and 
(01Qz) CTRs (Toney et al., 1990)]. As Fig. 5 shows, 
at small Qz the line shape is narrow, but at larger Q, 
it broadens and becomes dramatically asymmetric. 
This behavior was qualitatively explained in § III.B. 
To calculate quantitatively the QII line shapes in Fig. 

5, we use (16) from § Ill.B, where, for our data, 
G ( Q  x - Ghk  ) is a squared Lorentzian. Dropping con- 
stant factors, we have 

t + 
I,,(Q) = (M/sin x) ~ dt [1/(bE+ t2) 2] -- ! 

X S z { Q z + [ ( Q x - G h k - t ) / t a n x ] } ,  (52) 

where t ±= Qx-Ghk  + (sin XAQp/2) and S= is given 
in (51). This expression can be simplified and the 
integral eliminated if we approximate Sz as constant, 
as was done to obtain (18); here, however, we evaluate 
the integral numerically, since this is slightly more 
accurate. 

The solid lines in Fig. 5 show least-squares fits to 
the QII line shapes using the expression above. The 
roughness factor/3 (0.08), the X-ray absorption due 
to the material covering the silver electrode p.T 
(0.031) and the CBA stacking fraction (0.38) were 
taken from fits to the CTR intensity described in 
Toney et al. (1990). For each diffraction scan, five 
parameters were used to fit the data: (1) an overall 
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Fig. 5. QII scans of a CTR from an Ag(111) surface at different 
Qz. The solid lines show fits to the data using the integral 
expression for I, ,(Q) [(52)]. Since the silver substrates have both 
A BC and CBA stacking, there are contributions from the (10Q=) 
and the (01Qz) CTRs and bulk Bragg peaks occur at both Qz = 1 
and Q~= 2 r.l.u. 
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scale factor; (2) the out-of-plane width AQp sin X; 
(3) the in-plane width b; (4) a constant background 
term; and (5) a linear background term. Considering 
the simplifications and approximations, the fits are 
excellent. 

Fig. 6(a) shows the fitting parameter AQp sin X as 
a function of sin X. The filled circles are taken from 
the fits shown in Fig. 5 and the open triangles are 
from fits to data obtained on the same Ag(111) sub- 
strate but with a thallium monolayer adsorbed on the 
surface. Since the monolayer is modulated by the 
substrate, Fhk(Qz) is modified from (51) (Toney et 
al., 1990), but this change is small and we can neglect 
it here. The solid line in Fig. 6(a) shows a linear 
least-squares fit to the data that is constrained to pass 
through the origin. The observed linearity validates 
the approach we have taken to describe the QII line 
shapes. From the slope of this line, we determine the 
out-of-plane resolution as AQp=O.048 (1) r.l.u, or 
0.121 (4) A -~. This is as expected for our experimental 
arrangement, where slits defined the out-of-plane col- 
limation to be 24 mrad (e.g. AQp=(2rc/A)O.024= 
0.122 A - ' ) .  
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Fig. 6. The dependence of the fitting parameters AQp sin X and b 
on sin X. The filled circles are taken from the fits shown in Fig. 
4 and the open triangles are from fits to data obtained on the 
same Ag(111) substrate but with a thallium monolayer adsorbed. 
(a) The out-of-plane width of the resolution function, AQp sin X. 
The solid line shows a linear least-squares fit through these data 
with the constraint that the line goes through the origin. (b) The 
Lorentzian-squared width b. 

Fig. 6(b) shows the X dependence of the Lorent- 
zian-squared width b, which suggests there is a small 
but systematic dependence of b on X. As discussed 
in Appendix D, this small dependence is expected 
and results from neglecting the cos X dependence 
in the expression for H(Qx, qp, x) [i.e. using 
H(Qx, qp, X )  ~ G( Qx - qp sin X - G h k ) ] .  Because this 
approximation is best for small X, we use the values 
of b for the two smallest X to obtain b = 0.0050 (3) 
r.l.u, or 0.012(1),~ -1. From this and AQs,= 
0.005/~,-~, we estimate the intrinsic silver FWHM as 
Wo=0.015A -~, assuming the FWHMs add in 
quadrature. 

C. Resolution correction for Qz scans 

In § III.C, we found that the resolution correction 
for Qz scans along a CTR was given by ~pk(X): 
J(Ghk, X) [(22)]. For our Ag(111) data, the in-plane 
line shape is well described by a Lorentzian squared 
and this leads to 

~pk(X) = (1/k sin x)g[ ( AQp sin X)/2] 

= (GL2/k sin X){[tb/(t 2 + b2)] 

+tan-l(t/b)},=(aops~nx)/2. (53) 

The solid line in Fig. 7 shows ~pk(X) using the values 
of AQp and b obtained from fits to the QII scans 
described above. We have set Gm=2k/Tr so that 
~pk -- 1/sin X for large X. It is of interest to compare 
this result for a squared Lorentzian with ~pk for a 
Gaussian line shape. For the latter, (18) shows 

~pk(X) = [(27r)l/2GJksinx] 

x erf (AQp sin X/23/Etr~). (54) 

This is illustrated by the dashed line in Fig. 7, where 
we have used the same values of AQp and the in-plane 
FWHM as used for the Lorentzian squared and where 
we have taken GG = k/(2"n) 1/2 so that again ~pk"" 
1/sin X for large X. A comparison of the solid and 
dashed curves shows that, for Qz> 1 .~-1, they are 
in good agreement but, for Qz<A -1, there are 
differences of order 10%. 

D. Active sample area 

Here we show the active area for the Gaussian 
beam used in our experiments on A g ( l l l )  and com- 
pare this with the rectangular-beam approximation. 
For simplicity, we neglect the X-ray absorption factor 
exp ( -2 /zT/s in  a).  Fig. 8 shows the dependence of 
,~ on Qz calculated from (50) for our experimental 
conditions. As expected, the area is large for small 
Qz and decreases as Qz increases, falling off as 1/sin 
for Q~> 1.5/~-~. The dashed lines show ~ for a 
rectangular beam as obtained in §V.A: ~ =  
[(27r)l/20"2Ls]/(sin 2 0- t -cos2  X COS 2 0 )  1/2 for small Qz 
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and ~¢ = 2zrtrlo'2/sin a for large Q~, where we have 
used F~ = (27r)1/2o'i, i = 1, 2 (see § V.B). Fig. 8 illus- 
trates that these expressions are valid only for Q~ 
0.25 A-I  and Q~ ~> 1.5 A -1, respectively. Between 
these values, where most of our data lie, it is necessary 
to account for the smoothly varying shape of the 
incident beam and the more accurate expression 
(50) must be used. 

\ 

I I I ~ - -  

0 ,. L I I I f I I 
0 1 2 3 4 

Q z ( A  - I )  

Fig. 7. Resolution correction ~pk for Lorentzian-squared [solid 
line, (53)] and Gaussian [dashed line, (54)] in-plane line shapes. 
For the Lorentzian-squared line shape, the widths of  the resolu- 
tion function and the surface diffraction peak are those obtained 
from the fits in Fig. 6: AQp = 0.048 r.l.u, and b = 0.0050 r.l.u. For 
the Gaussian line shape, we have used the same AQn and a 
Gaussian r.m.s, width (0-c = 0.00273 r.l.u.) such that the FWHM 
of the Lorentzian squared and the Gaussian are the same. In 
both calculations, the resolution function out of  the scattering 
plane has a square-wave shape. 
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Fig. 8. Active sample area. The solid line shows ~ for a Gaussian 

shaped beam [(50)], while the dashed line shows ~¢ for a rec- 
tangular beam [(41) and (45)]. The incident-beam r.m.s, widths 
are 0" 2 = 0.33 and 0"1 = 0.73 mm and the sample length is 2Ls = 
21 mm. 

Table 3. Principal results and relevant equation 
numbers and sections of this paper 

Result and description 

Measured intensity for low Qz, permits determination 
of G(t) 
Measured intensity at large Qz, describes how the QII 
line shapes depend on Qz 
Qz dependence of QII line shapes for in-plane line 
shapes [G(t)] that are Gaussian, Lorentzian and 
Lorentzian squared 
Measured peak intensity in Qz scans or scans along a 
surface diffraction rod; relation to the rod structure 
factor; peak intensity resolution correction 
Q~ dependence of the integrated peak intensity in 
and to scans and relation to the rod structure factor; 
integrated intensity resolution correction 
Integrated intensity resolution correction for a 
Gaussian in-plane line shape [G(t)] 
Active sample area for uniform rectangular distribu- 
tion of the incident flux 
Active sample area for Gaussian distribution of the 
incident flux 

Section and 
equation(s) 

§ Ill.A; (13) 

§ III.B; (18) 

§ III.B; (19) and 
Table 2 

§ Ill.C; (22) 

§ Ill.E; (27) and 
(28) 

§ IV; (33) 

§ V; (41), (43) 
and (45) 
§ v; (50) 

VII. Summary and concluding remarks 

In this paper, we have discussed how the instrument 
resolution affects measured intensities in surface 
X-ray scattering when Qz is not small and when the 
symmetric four-circle geometry is employed. By 
assuming a square-wave shape for the resolution 
function out of the scattering plane, but an arbitrary 
in-plane shape, and by assuming that the surface 
scattering can be separated into functions of Qll and 
Qz, we have calculated the line shapes and intensities 
for a variety of scan directions. We have further 
calculated the resolution correction that is needed to 
convert rod intensities into structure factors and have 
treated both peak and integrated intensities. The loca- 
tions within this paper of its principle results are 
shown in Table 3. 

Our results are valid for nearly all Qz and, most 
importantly, can be used for intermediate Q~, where 
the resolution correction had not been well under- 
stood. Comparison of our results with previous treat- 
ments (Robinson, 1988; Altman, Estrup & Robinson, 
1988; Gibbs, Ocko, Zehner & Mochrie, 1988; Ocko, 
Gibbs, Huang, Zehner & Mochrie, 1991; Sandy, 
Mochrie, Zehner, Huang & Gibbs, 1991) gives good 
agreement for large Qz but shows differences for 
Q~ <~ 0.5-1 A -1. Support for our treatment is obtained 
from the excellent agreement between our expressions 
and data from an Ag(111) surface. 

We also calculate the active sample area for an 
incident X-ray beam that is not spatially uniform, as 
is appropriate for experiments using focusing optics. 
Our expressions account for the active area more 
accurately than that for a uniform rectangular beam, 
particularly for 0.2~ < Q~ ~< 1.5 A -1. In our treatment 
of the active area, we introduced a generalized reso- 
lution function and discussed conditions where this 
decouples into the active area and the usual resolution 
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function (dependent on only angular variables). We 
stress that these conditions are usually satisfied and 
this provides good justification for the general use of 
the usual resolution function. 

By considering a more realistic resolution function 
and incident-beam shape, we have refined previous 
calculations of how these influence intensities and 
line shapes in measurements of surface diffraction 
rods (Robinson, 1988; Altman, Estrup & Robinson, 
1988; Gibbs, Ocko, Zehner & Mochrie, 1988; Ocko, 
Gibbs, Huang, Zehner & Mochrie, 1991; Sandy, 
Mochrie, Zehner, Huang & Gibbs, 1991). The 
approach described in this paper quantitatively 
explains the line shapes for in-plane scans and 
enables more accurate determination of structure fac- 
tors from measurements of surface diffraction rods 
for, essentially, all Qz. Our approach is particularly 
significant for measurements at moderate values of 
Q~ ( - 0 . 2 - 1  A-~), which can be important in surface 
and interracial systems (Samant, Brown & Gordon, 
1991; Rabedeau, Toney, Harp, Farrow & Marks, 
1992; Toney, Farrow, Marks, Harp & Rabedeau, 
1992). 
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APPENDIX A 
Coordinate systems 

Here, we summarize equations related to our two 
coordinate systems. The first system is that of the 
sample and here i is the surface normal and ~ and 
are unit vectors parallel to the sample surface. The 
second coordinate system is defined by Q and the 
scattering plane; the unit vectors are g, ~ and ~, where 

is parallel to Q, ~ is perpendicular to Q but in the 
scattering plane and ~ is perpendicular to the scatter- 
ing plane. These are illustrated in Fig. 1. The connec- 
tion between the coordinate systems is 

~= cosx  cos ~01+cosx sin ~p:~ + s i n x i  

t =  - s i n  ~ol +cos  ¢~ (55) 

= - s i n  X cos ¢~ - s i n  X sin ~ + c o s  g l .  

In the scattering-plane coordinate system, the 
average incident wavevector kx, average scattered 
wavevector kF and scattering vector Q = k F -  kt are 
(see Fig. 1) 

kt = - k  sin 0 § -  k cos 0t 

kF = k sin 0 1 -  k cos 0t (56) 

Q = 2k sin 0g. 

If we now consider tp = 0 (as we do in our derivation 
of M), the equations above give 

kl / k = -sin 0 cos Xi-  cos 0~ - sin 0 sin Xi 

kF/k = sin 0 cos g l -  cos 0~ + sin O sin Xl 

~= - s inx l  +cosxl (57) 

(kl x ~)/k = cos 0 cos Xl-  sin O~ + sin X cos Oi 

(kF X ~)/k = -cos 0 cos Xl - sin O~ - sin X cos Oi. 

Armed with these expressions and noting that in the 
coordinate system of the sample, the position r is 

^ 

r = x l  + yy, we find 

r . ~ = - x  s i n x  

r" (kl x ~/k) = x cos 0 cos X - Y sin 0 (58) 

r" (kFx ~/k)= x cos 0 cos X + y  sin 0. 

Now consider incident (scattered) X-rays that have 
angular deviations from the average direction of y; 
and fli (Yf and flf) in and out of the scattering plane. 
The wavevectors of these X-rays are different from 
the average incident and scattered wavevectors (k~ 
and kF) and we have 

ki = - k  sin ( 0 +  7i) cos/3i~ 

- k cos (0 + %) cos/3~t + k s in/3~ 
(59) 

kf  = k sin (0 + y f) cos/3f~ 

- k cos (0 + yy) cos flf'i + k sin flf~. 

Keeping only linear terms (the angular deviations are 
small), we calculate q, the deviation of the detected 
X-rays from Q, as 

q( y,, fl,, y f  , flf)=- k f - k , - Q =  qs~+ q,'i+ qp~ 

= k(cos 0 ) ( y f +  y,)~+ k(sin 0) 

X ( y y - y , ) ' t + k ( B f - f l , )  ~. (60) 

This is inverted to yield 

y,(q,, q , ) = ( q J 2 k  cos O ) - ( q , / 2 k  sin 0) 

"Yf(qs,  qt)  = ( q J 2 k  cos 0 )+  (q, /2k sin O) 
(61) 

fl,(¢, qp) = - (  qv/2k ) + (~:/2) 

~f(¢, qp) = (qv/2k) + (~:/2), 

where ~ = B~ + fls. To write q in sample coordinates, 
the transformation (55) is used, with the result 

q = (q~ cos ~o cos X - q, sin ~o - qp cos ~o sin X) i  

+ (q~ sin ~o cos X + q, cos ~o - qp sin ~o sin X)~ 

+ (q~ sin X + qp COS X)z. (62) 
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A P P E N D I X  B 
Generalized instrument resolution function 

Here, we derive a general form for the resolution 
function when the incident beam is monochromatic 
but imperfectly collimated and spatially inhomo- 
geneous. The spatial flux density ~( r )  at r on the 
sample (measured in photons s -I cm -2) is 

• ( r ) = f  dy, d~,(oEcp/Oy, Ofl,)(y,,~,,r), (63) 

where 02~/O),,Ofl,(y,,/3,, r) is the distribution func- 
tion of X-rays deviating from the average incidence 
direction by angles ~/i and fli in and out of the scatter- 
ing plane, respectively. Note that 0 2 ¢~)/0 ~/iO~, ( "Yi, ~,, r) 
is the spectral brilliance multiplied by the bandpass 
of the monochromator (an invariant) evaluated at the 
sample surface. We also define A(~/f, fir, r) as the 
probability of detecting an X-ray scattered at r, where 
3'y and/3f are the angular deviations from the average 
scattering direction in and out of the scattering plane, 
respectively. The detector count rate is determined 
by integrating over all possible paths of the incident 
and detected X-rays: 

Ira(Q) = ~ d3,, d/3, dfl fd!/ fdEr 

x (02~/O./,Ofl,)(!/,, fli, r)A(Tf, fir, r) 

x (dEo'/dO dA)[Q+q('/ i ,  fl,, 3,f, flf); r], 

(64) 

where d2dr/dO dA is the differential X-ray scattering 
cross section per unit area on the surface and is an 
intrinsic function of the sample. The vector q is the 
deviation of the detected X-rays from Q (see Appen- 
dix A). 

If the sample is spatially homogenous [condition 
(i)], the spatial and momentum components of 
dEo-/dO dA decouple: 

(d2o'/dO dA)[Q+q(Ti, /3i ,  ~/f, flf); r] 

= M(r)  d2°" 
dO dA [Q-t-q(,y,, fl,, "Is, Ely)], (65) 

where M(r)  is a shape function defined to be 1 at the 
sample surface and 0 elsewhere. Changing variables 
to £ = fl, +/3f and q = qss+ q,t+ qpP, we define the 
generalized resolution function as 

g(q)  = (1/2k 3 sin 20) ~ d~: d Er 

x (02~/O./,O~,)['/,(qs, q,); fl,(~, qp); r] 

x M(r)zl[yz(q,  , q,); fly(~, %); r], (66) 

where the expressions for 7,(q,,q,), fl,(~,qp), 
"yf(q~, qt) and flf(~, qp) are given in Appendix A. 
With this definition, the measured intensity is 

I , ,(Q) = J d 3q g(q)(d2tr /dO dA)(Q+q) .  (67) 

As usual, this is the convolution of the (generalized) 
resolution function with the X-ray scattering from the 
sample. 

Considerable simplification of R(q) arises when 
one can separate both 02tP/O'/,Ofli('/i, fli, r) and 
A(3,f, fir, r) into spatial and angular functions. In 
most experimental arrangements, the detection prob- 
ability involves little coupling between the position 
the X-ray scatters from (r) and the direction it scatters 
into (Tf, fls). Thus, under this condition [(ii)], 
A(T/,  fly, r) can be separated: 

A ( y / , f l f ,  r ) = ~ ( y z ,  flf)~'(r).  (68) 

Separation of 02~/O7,Ofli(y,, fl,, r) into spatial and 
angular functions is more troublesome, since it is an 
invariant and Liouville's theorem applies. Thus, 
separation is not strictly possible unless the incident 
beam has zero divergence. (In other words, conserva- 
tion of flux requires that the flux gradient is perpen- 
dicular to the local beam direction; if the beam is 
divergent, this causes the spatial profile of the beam 
to change as it propagates.) Despite this, separation 
of 0 2 ~ / 0 y, Ofl, ( y,, fli, r) is a good approximation when 
two additional conditions are met: (iii) the beam is 
sufficiently collimated that its spatial profile does not 
change appreciably over the sample area; and (iv) 
the divergence of the incident beam is independent 
of position at the sample. Since these are usually 
satisfied, we use the approximation of separability 
and 

(a2~/ay, afl,)(y,, f l , ,r)= ~(y,,f l,).~'(r). (69) 

Combining (66)-(69), we obtain a simplified 
expression for the generalized resolution function: 

g(q)  = ~(q)~d(Q),  (70) 

where 

~(q)  = (1/2k 3 sin 20) ~ ds ¢ ~ [  7,(qs, q,), fl,(~:, qp)] 

x ~[3'f(qs, qt), flf(£, qp)] (71) 

is the usual resolution function (e.g. for a spatially 
uniform incident beam) and 

~ ( Q )  = ~ d 2 r ~ ' ( r ) M ( r ) ~  '(r) (72) 

is the active sample area. This is the sample area that 
is illuminated by the incident beam and viewed by 
the detector and it includes the X-ray absorption of 
the incident and scattered beams, since these are 
incorporated into ~ ' ( r )  and @'(r). 
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Abstract 

X-ray reflectivity is a powerful technique to study 
electron density profiles in the direction normal to 
the surface of a fiat sample. As usual in scattering 
experiments, where the phase information is lost, it 
is necessary to build a model that can be used to 
calculate the reflectivity for comparison with the 
measured reflectivity. In the calculations, it is 
necessary to correct the calculated reflectivity from 
geometrical and resolution-function factors, which 
play a major role at low angles of incidence. These 
factors are presented in this paper and the corrected 
calculated intensity is compared with the measured 
reflectivity of  a commercial silicon wafer and of a 
niobium film on a sapphire substrate. 

1. Introduction 

X-ray reflectivity is now widely used to determine the 
structure and the composition of fiat surfaces in the 
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direction normal to the sample face. The object of 
the reflectivity measurement is to determine the depth 
profile of electron density inside the material. The 
technique is highly appropriate to investigations of 
multilayers and polymer, magnetic and ferroelectric 
thin layers and also liquid surfaces (Russel, 1990; 
Ms-Nielsen, 1984; Benatar, 1992). Such systems are 
of considerable scientific and industrial interest 
because their properties may differ considerably from 
those of the bulk materials, as is the case in magnetic 
ultrathin layers, and because periodic variation of the 
composition (as in multilayers) causes further differ- 
ences in properties. In addition, the cost of thin layers 
is low compared with that of the bulk materials. 
Furthermore, thin layers are useful for insertion into 
integrated electronics, as, for example, with ferroelec- 
tric nonvolatile memories. 

The measurement of X-ray reflectivity is in prin- 
ciple easy to carry out, especially for samples with 
large fiat surfaces. However, even in this case, the 
finite size of the surface, combined with the non- 
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